Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph

نویسندگان

چکیده

We consider the nonlinear Klein-Gordon equation∂t2u(x,t)−∂x2u(x,t)+αu(x,t)=±|u(x,t)|p−1u(x,t) on a periodic metric graph (necklace graph) for p>1 with Kirchhoff conditions at vertices. Under suitable assumptions frequency we prove existence and regularity of infinitely many spatially localized time-periodic solutions (breathers) by variational methods. Compared to previous results obtained via spatial dynamics center manifold techniques our provide all values α≥0 as well multiplicity. Moreover, deduce properties show that they are weak corresponding initial value problem. Our approach relies critical points indefinite functionals, concentration compactness principle, proper set-up functional analytic framework. earlier work breathers using techniques, major improvement embedding has been achieved. This allows in particular avoid restrictions exponent achieve higher regularity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

Global Solutions for a Semilinear 2d Klein-gordon Equation with Exponential Type Nonlinearity

We prove the existence and uniqueness of global solutions for a Cauchy problem associated to a semilinear Klein-Gordon equation in two space dimension. Our result is based on an interpolation estimate with a sharp constant obtained by a standard variational method. Accepted for publication: ... AMS Subject Classifications: ..., ..., ... 1 2 S. Ibrahim, M. Majdoub, and N. Masmoudi

متن کامل

analytical solutions for the fractional klein-gordon equation

in this paper, we solve a inhomogeneous fractional klein-gordon equation by the method of separating variables. we apply the method for three boundary conditions, contain dirichlet, neumann, and robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2023.127520